

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA

PROVA DE SELEÇÃO DE TUTORES NA MODALIDADE À DISTÂNCIA

GRUPO: MATEMÁTICA

DATA:	HORÁRIO:		
NOME DO CANDIDATO:			
CPF:			
ASSINATURA:			

INSTRUÇÕES:

- 1. Preencha o quadro acima, não deixando de <u>assinar</u> no local indicado;
- 2. A avaliação é individual;
- 3. Duração da avaliação é de 01 (uma) hora;
- 4. Essa avaliação tem o valor de 60 (sessenta) pontos;
- 5. O tempo de tolerância para o início das provas e o tempo de sigilo é de 15 minutos.

QUESTÃO UM: A receita anual de uma montadora de automóveis admite como modelo $R = -x^3 + 450x^2 + 52500x$. Sobre essa função, podemos afirmar que:

- A. Para uma quantidade de 100 carros montados a receita da montadora é 9740000.
- B. A derivada da função receita é dada por $R' = -3x^2 + 450x + 52500$.
- C. A receita máxima da montadora ocorre para a montagem de 350 automóveis.
- D. A receita da montadora é decrescente para uma quantidade de até 350 automóveis montados e, a partir de então, a receita é crescente.

- A. A solução do sistema é (1, -1).
- B. (2,0) é uma possível solução do sistema.
- C. o sistema é indeterminado.
- D. o sistema é impossível.

QUESTÃO TRÊS: Dada a função $f(x) = \frac{1}{x-3}$, é INCORRETO afirmar que :

$$\lim_{x \to 3^+} f(x) \to +\infty$$

- B. A função não possui assíntotas.
- C. f(x) é contínua em seu domínio, pois é uma função racional.
- D. $D = \{x \in IR \mid x \neq 3\}$.

QUESTÃO QUATRO: Dada a função $g(x) = \frac{2x}{x+1}$, é CORRETO afirmar que :

$$\lim_{x \to -1^+} g(x) \to +\infty$$

$$\lim_{x \to -1^{-}} g(x) \to -\infty$$

$$g'(x) = \frac{2}{(x+1)^2}$$

D. A função g(x) é contínua.

QUESTÃO CINCO: Uma duplicata de R\$180.000,00 é descontada quatro meses antes de seu vencimento. Considerando uma taxa de desconto de 60% ao semestre, calcular o valor do desconto comercial.

A. R\$ 54.000,00

B. R\$ 72.000,00

C. R\$ 108.000,00

D. R\$ 126.000,00

QUESTÃO SEIS: Um empréstimo de \$200.000,00 será pago pela Tabela SAC em quatro prestações mensais postecipadas, a juros efetivos de 5% ao mês. Qual valor da segunda prestação?

- A. R\$ 52.500,00
- B. R\$ 55.000,00
- C. R\$ 57.500,00
- D. R\$ 60.000,00

QUESTÃO SETE: O Hospital Municipal de Ozzylandia adquiriu um mamógrafo no valor de R\$55.000,00. Devido a dificuldades financeiras o hospital não pode honrar seus compromissos e a dívida foi resolvida via decisão judicial após cinco anos, sendo determinado que a dívida fosse quitada por meio de pagamento único a uma taxa de juros compostos de 15% ao ano. Qual o valor pago pela dívida relativa a compra do mamógrafo?

A. R\$110.624,80

- B. R\$ 96.250,00
- C. R\$ 63.250,00
- D. R\$ 61.500,00

QUESTÃO OITO: O administrador do Posto de Saúde Central do município Dickinsonlandia, numa tentativa de melhorar o esquema de atendimento, procurou estimar o tempo médio de consulta de cada paciente. Uma amostra aleatória de 25 pacientes, colhida num período de 3 semanas, acusou uma média de 30 minutos, com desvio padrão de 7 minutos. O intervalo de 95% de confiança para o verdadeiro tempo médio de consulta, considerando que o tempo de espera é normalmente distribuído, é:

A. [27,26; 32,74]B. [27,11; 32,89]C. [26,08; 33,92]D. [28,04; 31,96]

QUESTÃO NOVE: Na rodada final de um campeonato de futebol apenas dois times A e B têm chance de ser campeões os times. O time A tem 0,92 de chance de vencer e 0,06 de empatar a partida dessa última rodada. O time B tem 0,76 chance de vencer a partida e 0,05 de perder a partida. Devido a pontuação dos dois times na tabela, o time B só será campeão se ele vencer a partida da ultima rodada e o time A perder. Qualquer outro resultado o time A é campeão. Qual é a probabilidade de cada um dos times A e B, respectivamente, ganhar o campeonato?

A. 0,920 e 0,760

B. 0,760 e 0,920

C. 0,046 e 0,015

D. 0,985 e 0,015

QUESTÃO DEZ: Os registros dos últimos anos de uma faculdade atestam que a nota média para os calouros admitidos é de 118 pontos (teste vocacional). Para testar a hipótese de que a média de uma nova turma é diferente da anterior, ao nível de 5% de significância, tirou-se ao acaso, uma amostra de 30 notas, obtendo-se média 112 e desvio padrão 20. Pode-se afirmar a respeito da hipótese testada:

- A. As hipóteses são H₀: μ=118 e H₁: μ≠118, sendo a região de aceitação do teste o intervalo de [-1,96; 1,96] e o valor da estatística do teste é igual 1,64. Conclui-se, que não se rejeita H₀ ao nível 5 % de significância, logo as médias das turmas são iguais.
- B. As hipóteses são H₀: μ=118 e H₁: μ=118, sendo a região de aceitação do teste o intervalo de [-2,045; 2,045] e o valor da estatística do teste é igual -1,64. Conclui-se, que não se rejeita H₀ ao nível 5 % de significância, logo as médias das turmas são iguais.
- C. As hipóteses são H₀: μ=112 e H₁: μ≠112, sendo a região de aceitação do teste o intervalo de [-2,042; 2,042] e o valor da estatística do teste é igual 1,64. Conclui-se, que não se rejeita H₀ ao nível 5 % de significância, logo as médias das turmas são iguais.
- D. As hipóteses são H_o : μ =112 e H_1 : μ \neq 112, sendo a região de rejeição do teste o intervalo de [-1,96 ; 1,96] e o valor da estatística do teste é igual -1,64. Conclui-se, que se rejeita H_o ao nível 5 % de significância, logo as médias das turmas são diferentes.

Anexo I

- 1) Valor de Z, distribuição Normal Padrão ao nível de 5% de significância Z=1,96 (bicaudal)
- 2) Tabela Distribuição t-Student

,									
	Probabilidade unicaudal de t de Student.								
g.l.	0,25	0,1	0,05	0,025	0,01	0,005	0,001		
1	1,000	3,078	6,314	12,706	31,821	63,657	318,309		
2	0,816	1,886	2,920	4,303	6,965	9,925	22,327		
3	0,765	1,638	2,353	3,182	4,541	5,841	10,215		
4	0,741	1,533	2,132	2,776	3,747	4,604	7,173		
5	0,727	1,476	2,015	2,571	3,365	4,032	5,893		
6	0,718	1,440	1,943	2,447	3,143	3,707	5,208		
7	0,711	1,415	1,895	2,365	2,998	3,499	4,785		
8	0,706	1,397	1,860	2,306	2,896	3,355	4,501		
9	0,703	1,383	1,833	2,262	2,821	3,250	4,297		
10	0,700	1,372	1,812	2,228	2,764	3,169	4,144		
11	0,697	1,363	1,796	2,201	2,718	3,106	4,025		
12	0,695	1,356	1,782	2,179	2,681	3,055	3,930		
13	0,694	1,350	1,771	2,160	2,650	3,012	3,852		
14	0,692	1,345	1,761	2,145	2,624	2,977	3,787		
15	0,691	1,341	1,753	2,131	2,602	2,947	3,733		
16	0,690	1,337	1,746	2,120	2,583	2,921	3,686		
17	0,689	1,333	1,740	2,110	2,567	2,898	3,646		
18	0,688	1,330	1,734	2,101	2,552	2,878	3,610		
19	0,688	1,328	1,729	2,093	2,539	2,861	3,579		
20	0,687	1,325	1,725	2,086	2,528	2,845	3,552		
21	0,686	1,323	1,721	2,080	2,518	2,831	3,527		
22	0,686	1,321	1,717	2,074	2,508	2,819	3,505		
23	0,685	1,319	1,714	2,069	2,500	2,807	3,485		
24	0,685	1,318	1,711	2,064	2,492	2,797	3,467		
25	0,684	1,316	1,708	2,060	2,485	2,787	3,450		
26	0,684	1,315	1,706	2,056	2,479	2,779	3,435		
27	0,684	1,314	1,703	2,052	2,473	2,771	3,421		
28	0,683	1,313	1,701	2,048	2,467	2,763	3,408		
29	0,683	1,311	1,699	2,045	2,462	2,756	3,396		
30	0,683	1,310	1,697	2,042	2,457	2,750	3,385		
40	0,681	1,303	1,684	2,021	2,423	2,704	3,307		
60	0,679	1,296	1,671	2,000	2,390	2,660	3,232		
120	0,677	1,289	1,658	1,980	2,358	2,617	3,160		
••	0,674	1,282	1,645	1,96	2,326	2,576	3,09		